nnAudio.features.griffin_lim.Griffin_Lim¶
- class nnAudio.features.griffin_lim.Griffin_Lim(n_fft, n_iter=32, hop_length=None, win_length=None, window='hann', center=True, pad_mode='reflect', momentum=0.99, device='cpu')¶
 Bases:
torch.nn.modules.module.ModuleConverting Magnitude spectrograms back to waveforms based on the “fast Griffin-Lim”[1]. This Griffin Lim is a direct clone from librosa.griffinlim.
[1] Perraudin, N., Balazs, P., & Søndergaard, P. L. “A fast Griffin-Lim algorithm,” IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (pp. 1-4), Oct. 2013.
- Parameters
 n_fft (int) – The window size. Default value is 2048.
n_iter=32 (int) – The number of iterations for Griffin-Lim. The default value is
32hop_length (int) – The hop (or stride) size. Default value is
Nonewhich is equivalent ton_fft//4. Please make sure the value is the same as the forward STFT.window (str) – The windowing function for iSTFT. It uses
scipy.signal.get_window, please refer to scipy documentation for possible windowing functions. The default value is ‘hann’. Please make sure the value is the same as the forward STFT.center (bool) – Putting the iSTFT keneral at the center of the time-step or not. If
False, the time index is the beginning of the iSTFT kernel, ifTrue, the time index is the center of the iSTFT kernel. Default value ifTrue. Please make sure the value is the same as the forward STFT.momentum (float) – The momentum for the update rule. The default value is
0.99.device (str) – Choose which device to initialize this layer. Default value is ‘cpu’
Methods
__init__Initializes internal Module state, shared by both nn.Module and ScriptModule.
Convert a batch of magnitude spectrograms to waveforms.
- forward(S)¶
 Convert a batch of magnitude spectrograms to waveforms.
- Parameters
 S (torch tensor) – Spectrogram of the shape
(batch, n_fft//2+1, timesteps)